Genau.
Und einige Zitate dazu:
Linkwitz-Riley-Frequenzweichen Vierter Ordnung sind die meistgenutzten Lautsprecherweichen. Zwei Butterworth-Filter werden dazu kaskadiert. Die Steilheit beträgt 24 dB/Oktave (80 dB/Dekade). Die Phasendifferenz zwischen Tiefpass- und Hochpass-Ausgang der Weiche ist 360°, so scheinen sie in Phase zu sein, wobei der Tiefpass eine volle Periode nacheilt.
Bei Filtern zweiter Ordnung gibt es neben der charakteristischen Frequenz noch einen 2. Parameter, die Güte. Diese beschreibt die Schwingfähigkeit des Filters, also etwa wie lange der Filter nach einem kurzen Impuls nachschwingt. Filter hoher Güte (nicht als Qualitätsmassstab) geben einen schärferen Übergang von Durchlass zum Sperren. Als Nachteil braucht es aber etwas Zeit bis der Filter eingeschwungen ist. Ob eine hohe oder niedriger Güte gewünscht ist, hängt von der Anwendung ab: Im Audiobereich nutzt man Filter mit eher geringer Güte und dadurch schwacher Schwingneigung. Wenn aber eine hohe Trennschärfe (etwa Radioempfang) gefordert ist, kann man diese durch Erhöhung der Güte verbessern. Bei Filtern mit hoher Güte sinkt die Dämpfung beim Übergang zum Sperrbereich des Filters erst ab, in einem bestimmten Bereich wird sie sogar kleiner als 1. Das heißt das Signal wird sogar noch verstärkt. Danach steigt die Dämpfung relativ schnell an. Bei einer Güte, die kleiner ist als die Wurzel aus 1/2 (ca. 0,707) tritt dieses sogenannte Überschwingen des Frequenzgangs nicht auf. Diese Güte ist auch die gebräuchlichste, sie ist meistens ein guter Kompromiss. Filter mit dieser Güte haben eine Butterworth-Charakteristik.
Also: 2 Butterworth (0,7) ergeben LR 4. Ordnung. Siehe links. Rechtes Diagramm: 2 x 0,5
Bei Filtern 2. Ordnung ist die Güte 0,5 richtig, 0,7 nicht.
http://hifiakademie.de/?id=6.3.6&si=...y4yMzMuMTM3fCA
Und was hat man bei der Anwendung auf Lautsprecher davon?
Nichts - solange man die inneren Kennwerte der Treiber nicht mitberücksichtigt!
Und auch dann hilft es für Filterzwecke nicht wirklich.
Diese Filter gehen von einer Trennung bei -6dB aus, Tief- und Hochpass addieren sich perfekt. Naja, wenn die Treiber keine Pegel- und/oder Phasenfehler hätten
Und einige Zitate dazu:
Linkwitz-Riley-Frequenzweichen Vierter Ordnung sind die meistgenutzten Lautsprecherweichen. Zwei Butterworth-Filter werden dazu kaskadiert. Die Steilheit beträgt 24 dB/Oktave (80 dB/Dekade). Die Phasendifferenz zwischen Tiefpass- und Hochpass-Ausgang der Weiche ist 360°, so scheinen sie in Phase zu sein, wobei der Tiefpass eine volle Periode nacheilt.
Bei Filtern zweiter Ordnung gibt es neben der charakteristischen Frequenz noch einen 2. Parameter, die Güte. Diese beschreibt die Schwingfähigkeit des Filters, also etwa wie lange der Filter nach einem kurzen Impuls nachschwingt. Filter hoher Güte (nicht als Qualitätsmassstab) geben einen schärferen Übergang von Durchlass zum Sperren. Als Nachteil braucht es aber etwas Zeit bis der Filter eingeschwungen ist. Ob eine hohe oder niedriger Güte gewünscht ist, hängt von der Anwendung ab: Im Audiobereich nutzt man Filter mit eher geringer Güte und dadurch schwacher Schwingneigung. Wenn aber eine hohe Trennschärfe (etwa Radioempfang) gefordert ist, kann man diese durch Erhöhung der Güte verbessern. Bei Filtern mit hoher Güte sinkt die Dämpfung beim Übergang zum Sperrbereich des Filters erst ab, in einem bestimmten Bereich wird sie sogar kleiner als 1. Das heißt das Signal wird sogar noch verstärkt. Danach steigt die Dämpfung relativ schnell an. Bei einer Güte, die kleiner ist als die Wurzel aus 1/2 (ca. 0,707) tritt dieses sogenannte Überschwingen des Frequenzgangs nicht auf. Diese Güte ist auch die gebräuchlichste, sie ist meistens ein guter Kompromiss. Filter mit dieser Güte haben eine Butterworth-Charakteristik.
Also: 2 Butterworth (0,7) ergeben LR 4. Ordnung. Siehe links. Rechtes Diagramm: 2 x 0,5
Bei Filtern 2. Ordnung ist die Güte 0,5 richtig, 0,7 nicht.
http://hifiakademie.de/?id=6.3.6&si=...y4yMzMuMTM3fCA
Und was hat man bei der Anwendung auf Lautsprecher davon?
Nichts - solange man die inneren Kennwerte der Treiber nicht mitberücksichtigt!
Und auch dann hilft es für Filterzwecke nicht wirklich.
Diese Filter gehen von einer Trennung bei -6dB aus, Tief- und Hochpass addieren sich perfekt. Naja, wenn die Treiber keine Pegel- und/oder Phasenfehler hätten
Kommentar